Speaker Verification using Convolutional Neural Networks

نویسنده

  • Hossein Salehghaffari
چکیده

In this paper, a novel Convolutional Neural Network architecture has been developed for speaker verification in order to simultaneously capture and discard speaker and non-speaker information, respectively. In training phase, the network is trained to distinguish between different speaker identities for creating the background model. One of the crucial parts is to create the speaker models. Most of the previous approaches create speaker models based on averaging the speaker representations provided by the background model. We overturn this problem by further fine-tuning the trained model using the Siamese framework for generating a discriminative feature space to distinguish between same and different speakers regardless of their identity. This provides a mechanism which simultaneously captures the speaker-related information and create robustness to within-speaker variations. It is demonstrated that the proposed method outperforms the traditional verification methods which create speaker models directly from the background model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Deep Speaker Embeddings for Short-Duration Speaker Verification

The performance of a state-of-the-art speaker verification system is severely degraded when it is presented with trial recordings of short duration. In this work we propose to use deep neural networks to learn short-duration speaker embeddings. We focus on the 5s-5s condition, wherein both sides of a verification trial are 5 seconds long. In our previous work we established that learning a non-...

متن کامل

Text-Independent Speaker Verification Using 3D Convolutional Neural Networks

In this paper, a novel method using 3D Convolutional Neural Network (3D-CNN) architecture has been proposed for speaker verification in the text-independent setting. At the development phase, a CNN is trained to classify speakers at the utterance-level. In the enrollment stage, the trained network is utilized to directly create a speaker model for each speaker based on the extracted features. F...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Locally-connected and convolutional neural networks for small footprint speaker recognition

This work compares the performance of deep LocallyConnected Networks (LCN) and Convolutional Neural Networks (CNN) for text-dependent speaker recognition. These topologies model the local time-frequency correlations of the speech signal better, using only a fraction of the number of parameters of a fully connected Deep Neural Network (DNN) used in previous works. We show that both a LCN and CNN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018